all i need is these two files
Create VectorContainer.hpp
Create SelectionSort.hpp 
Test SelectionSort.hpp using the VectorContainer.hpp class you made
# Strategy Pattern
In this lab you will create a strategy pattern for sorting a collection of expression trees by their `evaluate()` value, which you will pair with different containers to see how strategies can be paired with different clients through an interface to create an easily extendable system. This lab requires a completed composite pattern from the previous lab, so you should begin by copying your or your partner’s code from the previous assignment into your new repo, making sure it compiles correctly, and running your tests to make sure everything is still functioning correctly.

You will start this lab by creating two expression tree containers: one that uses a vector to hold your trees (class `VectorContainer`) and one that uses a standard list (class `ListContainer`). Each of these container classes should be able to hold any amount of different expressions each of which can be of any size. You will implement them both as subclasses of the following `Container` abstract base class, which has been provided to you in container.h. You should create each one independently, creating tests for them using the google test framework before moving on. Each container should be it’s own commit with a proper commit message. Optionally you can create each one as a branch and merge it in once it has been completed.
class Container {
        Sort* sort_function;

        /* Constructors */
        Container() : sort_function(ptr) { };
        Container(Sort* function) : sort_function(function) { };

        /* Non Virtual Functions */
        void set_sort_function(Sort* sort_function); // set the type of sorting algorithm

        /* Pure Virtual Functions */
        // push the top pointer of the tree into container
        virtual void add_element(Base* element) = 0;
        // iterate through trees and output the expressions (use stringify())
        virtual void print() = 0;
        // calls on the previously set sorting-algorithm. Checks if sort_function is not
        // , throw exception if otherwise
        virtual void sort() = 0;

        /* Functions Needed to Sort */
        //switch tree locations
        virtual void swap(int i, int j) = 0;
        // get top ptr of tree at index i
        virtual Base* at(int i) = 0;
        // return container size
        virtual int size() = 0;
Notice that our Container abstract base class does not have any actual STL containers because it leaves the implementation details of the container to the subclasses. You **must use the homogeneous interface above for your sort functions, and you are only allowed to manipulate the containers through this interface, not directly**. This will allow you to extend and change the underlying functionality without having to change anything that interfaces with it.

## Sorting Classes
In addition to the containers you will also create two sort functions capable of sorting your containers, one that uses the [selection sort](https://www.mathbits.com/MathBits/CompSci/Arrays/Selection.htm) algorithm and one that uses the [bubble sort](https://www.mathbits.com/MathBits/CompSci/Arrays/Bubble.htm) algorithm (you may adapt this code when writing your sort functions). They should both be implemented as subclasses of the `Sort` base class below which has been provided. You should create each one independently, creating tests for them using the google test framework before moving on. Each sort class should be it’s own commit with it’s own proper commit message. When creating tests for these sort classes, make sure you test them with each of the containers you developed previously, and with a number of different expression trees.
class Sort {
        /* Constructors */

        /* Pure Virtual Functions */
        virtual void sort(Container* container) = 0;


#ifndef _SORT_HPP_
#define _SORT_HPP_

#include “container.hpp”

class Container;

class Sort {
/* Constructors */

/* Pure Virtual Functions */
virtual void sort(Container* container) = 0;

#endif //_SORT_HPP_


#ifndef _BASE_HPP_
#define _BASE_HPP_


Place your order
(550 words)

Approximate price: $22

Calculate the price of your order

550 words
We'll send you the first draft for approval by September 11, 2018 at 10:52 AM
Total price:
The price is based on these factors:
Academic level
Number of pages
Basic features
  • Free title page and bibliography
  • Unlimited revisions
  • Plagiarism-free guarantee
  • Money-back guarantee
  • 24/7 support
On-demand options
  • Writer’s samples
  • Part-by-part delivery
  • Overnight delivery
  • Copies of used sources
  • Expert Proofreading
Paper format
  • 275 words per page
  • 12 pt Arial/Times New Roman
  • Double line spacing
  • Any citation style (APA, MLA, Chicago/Turabian, Harvard)

Our guarantees

Delivering a high-quality product at a reasonable price is not enough anymore.
That’s why we have developed 5 beneficial guarantees that will make your experience with our service enjoyable, easy, and safe.

Money-back guarantee

You have to be 100% sure of the quality of your product to give a money-back guarantee. This describes us perfectly. Make sure that this guarantee is totally transparent.

Read more

Zero-plagiarism guarantee

Each paper is composed from scratch, according to your instructions. It is then checked by our plagiarism-detection software. There is no gap where plagiarism could squeeze in.

Read more

Free-revision policy

Thanks to our free revisions, there is no way for you to be unsatisfied. We will work on your paper until you are completely happy with the result.

Read more

Privacy policy

Your email is safe, as we store it according to international data protection rules. Your bank details are secure, as we use only reliable payment systems.

Read more

Fair-cooperation guarantee

By sending us your money, you buy the service we provide. Check out our terms and conditions if you prefer business talks to be laid out in official language.

Read more